Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 331
1.
Phytomedicine ; 129: 155683, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38701543

BACKGROUND: Peritoneal dialysis (PD) is a successful renal replacement therapy for end-stage renal disease. Long-term PD causes mesothelial-mesenchymal transition (MMT) of peritoneal mesothelial cells (PMCs), leading to peritoneal fibrosis (PF), which reduces the efficiency of PD. Macrophages are thought to play a role in the onset and perpetuation of peritoneal injury. However, the mechanisms by which macrophages-PMCs communication regulates peritoneal fibrosis are not fully understood resulting in a lack of disease-modifying drugs. Astragaloside IV (AS-IV) possessed anti-fibrotic effect towards PF in PD whereas the mechanistic effect of AS-IV in PD is unknown. METHODS: The primary macrophages were extracted and treated with LPS or AS-IV, then co-cultured with primary PMCs in transwell plates. The macrophage-derived exosomes were extracted and purified by differential centrifugation, then co-cultured with primary PMCs. Small RNA-seq was used to detect differential miRNAs in exosomes, and then KEGG analysis and q-PCR were performed for validation. In vivo PD rat models were established by inducing with high-glucose peritoneal dialysis fluid and different concentrations of AS-IV and exosomes were intraperitoneal injection. Through qRT-PCR, western blotting, and luciferase reporting, candidate proteins and pathways were validated in vivo and in vitro. The functions of the validated pathways were further investigated using the mimic or inhibition strategy. PF and inflammatory situations were assessed. RESULTS: We found AS-IV reversed the MMT of PMCs caused by LPS-stimulated macrophages and the improving effect was mediated by macrophage-derived exosomes in vitro. We also demonstrated that AS-IV significantly reduced the MMT of PMCs in vitro or PF in a rat PD model via regulating exosome-contained miR-204-5p which targets Foxc1/ß-catenin signaling pathway. CONCLUSION: AS-IV attenuates macrophage-derived exosomes induced fibrosis in PD through the miR-204-5p/Foxc1 pathway.

2.
Rejuvenation Res ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38666697

Elevated substance P can be utilized to predict early mortality during the first week of cerebral infarction. Whether aprepitant, a substance P receptor blocker could be utilized to alleviate poststroke pneumonia which is investigated in this study. Intraluminal monofilament model of middle cerebral artery occlusion (MCAO) was constructed in C57BL/6J male mice, and the relative expression of substance P was detected in collected bronchoalveolar lavage fluid (BALF) and lung tissue homogenate at 24 hours, 48 hours, and 72 hours poststroke. On the other hand, different concentrations of aprepitant (0.5, 1, and 2 mg/kg) were atomized and inhaled into MCAO mice. Inflammation cytokines and bacterial load were detected in collected BALF and lung tissue homogenate at 72-hour poststroke, and lung injury was revealed by histological examination. Aprepitant administration decreased total proteins, total cells, neutrophils, and macrophages in BALF. The concentrations of interleukin (IL)-6, IL-1ß, tumor necrosis factor-α, interferon γ, monocyte chemoattractant protein-1, and IL-10 in lung tissue homogenates were also diminished by the administration of aprepitant. In conclusion, aprepitant could attenuate poststroke pneumonia in mice suggesting its potential therapeutic use in the clinic.

3.
Angew Chem Int Ed Engl ; : e202405962, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38644535

Nature-inspired supramolecular self-assemblies are attractive photocatalysts, but their quantum yields are limited by poor charge separation and transportation. A promising strategy for efficient charge transfer is to enhance the built-in electric field by symmetry breaking. Herein, an unsymmetric protonation, N-heterocyclic π-conjugated anthrazoline-based supramolecular photocatalyst SA-DADK-H+ was developed. The unsymmetric protonation breaks the initial structural symmetry of DADK, resulting in ca. 50-fold increase in the molecular dipole, and facilitates efficient charge separation and transfer within SA-DADK-H+. The protonation process also creates numerous active sites for H2O adsorption, and serves as crucial proton relays, significantly improving the photocatalytic efficiency. Remarkably, SA-DADK-H+ exhibits an outstanding hydrogen evolution rate of 278.2 mmol g-1 h-1 and a remarkable apparent quantum efficiency of 25.1% at 450 nm, placing it among the state-of-the-art performances in organic semiconductor photocatalysts. Furthermore, the versatility of the unsymmetric protonation approach has been successfully applied to four other photocatalysts, enhancing their photocatalytic performance by 39 to 533 times. These findings highlight the considerable potential of unsymmetric protonation induced symmetry breaking strategy in tailoring supramolecular photocatalysts for efficient solar-to-fuel production.

4.
Microbiol Res ; 284: 127711, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38636240

Microbial ferroptosis has been proved to combat drug-resistant pathogens, but whether this pattern can be applied to the prevention and control of Escherichia coli remains to be further explored. In this study, ferrous gluconate (FeGlu) showed remarkable efficacy in killing E. coli MG1655 with a mortality rate exceeding 99.9%, as well as enterotoxigenic E. coli H10407 (ETEC H10407) and enterohemorrhagic E. coli O157:H7 (EHEC O157:H7). Bacteria death was instigated by the infiltration of Fe2+, accompanied by a burst of intracellular reactive oxygen species (ROS) and lipid peroxidation. Notably, mitigating lipid peroxidation failed to alleviate death of E. coli. Further findings confirmed that FeGlu induced DNA damage, and ΔrecA mutant showed more sensitive, implicating that DNA damage was involved in the death of E. coli. The direct interaction of Fe2+ with DNA was demonstrated by fluorescent staining, gel electrophoresis, and circular dichroism (CD). Moreover, proteomic analysis unveiled 50 differentially expressed proteins (DEPs), including 18 significantly down-regulated proteins and 32 significantly up-regulated proteins. Among them, the down-regulation of SOS-responsive transcriptional suppressor LexA indicated DNA damage induced severely by FeGlu. Furthermore, FeGlu influenced pathways such as fatty acid metabolism (FadB, FadE), iron-sulfur cluster assembly (IscA, IscU, YadR), iron binding, and DNA-binding transcription, along with α-linolenic acid metabolism, fatty acid degradation, and pyruvate metabolism. These pathways were related to FeGlu stress, including lipid peroxidation and DNA damage. In summary, FeGlu facilitated ferroptosis in E. coli through mechanisms involving lipid peroxidation and DNA damage, which presents a new strategy for the development of innovative antimicrobial strategies targeting E. coli infections.

5.
J Appl Toxicol ; 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38581191

Isobavachalcone (IBC) is a flavonoid component of the traditional Chinese medicine Psoraleae Fructus, with a range of pharmacological properties. However, IBC causes some hepatotoxicity, and the mechanism of toxicity is unclear. The purpose of this paper was to investigate the possible mechanism of toxicity of IBC on HepG2 cells and zebrafish embryos. The results showed that exposure to IBC increased zebrafish embryo mortality and decreased hatchability. Meanwhile, IBC induced liver injury and increased expression of ALT and AST activity. Further studies showed that IBC caused the increase of ROS and MDA the decrease of CAT, GSH, and GSH-Px; the increase of Fe2+ content; and the changes of ferroptosis related genes (acsl4, gpx4, and xct) and iron storage related genes (tf, fth, and fpn) in zebrafish embryos. Through in vitro verification, it was found that IBC also caused oxidative stress and increased Fe2+ content in HepG2 cells. IBC caused depolarization of mitochondrial membrane potential (MMP) and reduction of mitochondrial ATP, as well as altered expression of ACSl4, SLC7A11, GPX4, and FTH1 proteins. Treatment of HepG2 cells with ferrostatin-1 could reverse the effect of IBC. Targeting the System Xc--GSH-GPX4 pathway of ferroptosis and preventing oxidative stress damage might offer a theoretical foundation for practical therapy and prevention of IBC-induced hepatotoxicity.

6.
PLoS One ; 19(4): e0302361, 2024.
Article En | MEDLINE | ID: mdl-38687802

Growing evidence has increasingly suggested a potential linkage between the oral microbiome and various diseases, including pancreatic ductal adenocarcinoma (PDAC). However, the utilization of gene-level information derived from the oral microbiome for diagnosing PDAC remains unexplored. In this study, we sought to investigate the novel potential of leveraging genomic signatures associated with antibiotic resistance genes (ARGs) within the oral microbiome for the diagnosis of PDAC. By conducting an analysis of oral microbiome samples obtained from PDAC patients, we successfully identified specific ARGs that displayed distinct sequence abundance profiles correlated with the presence of PDAC. In the healthy group, three ARGs were found to be enriched, whereas 21 ARGs were enriched in PDAC patients. Remarkably, these ARGs from oral microbiome exhibited promising diagnostic capabilities for PDAC (AUROC = 0.79), providing a non-invasive and early detection method. Our findings not only provide novel modal data for diagnosing PDAC but also shed light on the intricate interplay between the oral microbiome and PDAC.


Carcinoma, Pancreatic Ductal , Microbiota , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/microbiology , Pancreatic Neoplasms/diagnosis , Microbiota/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/microbiology , Carcinoma, Pancreatic Ductal/diagnosis , Female , Male , Mouth/microbiology , Middle Aged , Drug Resistance, Microbial/genetics , Aged , Genomics/methods
7.
Phytomedicine ; 129: 155564, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38554577

BACKGROUND: The incidence of ulcerative colitis (UC) is on the rise globally and the development of drugs targeting UC is urgent. Finding the target of action of natural products is important for drug discovery, elucidation of drug action mechanism, and disease mechanism. San-Ye-Qing (SYQ), is an ancient herbal medicine, but whether the powder of its rhizome has pharmacological effects against UC and its mechanism of action are not clear. PURPOSE: To evaluate the therapeutic effectiveness of rhizome powder of SYQ in treating UC, and conduct an isolation and characterization of the chemical constituents of the powder. Further, screen the most potent compounds among them and determine the potential mechanism for treating UC. METHODS: In vivo, the therapeutic effect of SYQ's rhizome powder on UC was assessed by mice's body weight, DAI score, colon length, tissue MPO activity, serum inflammatory markers, etc. Additionally, HPLC was used to isolate and identify the specific chemical components of SYQ's rhizome powder. Then, the most effective compounds and their therapeutic targets were analysed and screened in SYQ rhizome powder using network pharmacology, combined with CCK-8 assay, NO release assay and molecular docking assay, in conjunction with CETSA, DARTS, SPR and enzyme activity assay. Finally, the biological effects of the key compound on the targets were validated using Western blot and ELISA. RESULTS: In vivo, SYQ rhizome powder effectively restored mice's body weight, lowered DAI and pathological score, downregulated the expression of inflammatory biomarkers, and restored colon length, as well as the colonic epithelial and mucus barriers. Afterward, 9 compounds were isolated and identified from the powder of the rhizomes of SYQ by HPLC. Nicotiflorin is the primary compound in SYQ with the highest concentration. According to both CCK-8 and NO release tests, Nicotiflorin is also the most efficacious compound. Combined with network pharmacological prediction, molecular docking analysis, CETSA, DARTS, SPR and enzyme activity assay, Nicotiflorin may ultimately suppress inflammation by targeting p65 and inhibiting the NF-κB pathway, thereby attenuating the activation of NLRP3 inflammasome. To verify this conclusion, Western blot and ELISA experiments were conducted. CONCLUSIONS: Our results suggest that the extract from SYQ rhizomes has therapeutic properties for UC. Its active ingredient Nicotiflorin exerted potent anti-UC effects by binding to p65 and inhibiting the activation of NF-κB and NLRP3 inflammasomes.

8.
BMC Genomics ; 25(1): 316, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38549050

BACKGROUND: Alfalfa is a perennial forage crop of high importance, but its cultivation is often affected by drought stress. Currently, the investigation of drought-related small RNAs is a popular research topic to uncover plant drought resistance mechanisms. Among these small RNAs, microRNA166 (miR166) is associated with drought in numerous plant species. Initial small RNA sequencing studies have shown that miR166 is highly responsive to exogenous nitric oxide (NO) and drought. Therefore, analyzing the expression of Msa-miR166 under nitric oxide and drought treatment is significant. RESULT: Bioinformatics analysis revealed that the miR166 family is widely distributed among plants, ranging from mosses to eudicots, with significant distribution differences between species. The evolutionary degree of Msa-miR166s is highly similar to that of Barrel medic (Medicago truncatula) and Soybean (Glycine max), but significantly different from the model plant Arabidopsis (Arabidopsis thaliana). It is suggested that there are no significant differences in miR166s within the species, and members of Msa-miR166s can form a typical stem-loop. The lowest level of exogenous nitric oxide was observed in Msa-miR166s under drought stress, followed by individual drought, and the highest level was observed after removing endogenous nitric oxide. CONCLUSION: In response to short-term drought, Msa-miR166s down-regulate expression in alfalfa (Medicago sativa L.). Exogenous nitric oxide can reduce the expression of Msa-miR166s in response to short-term drought. These findings suggest that Msa-miR166e-5p is responsive to environmental changes. The expression levels of target genes showed an opposite trend to Msa-miR166s, verifying the accuracy of Degradome sequencing in the early stage. This suggests that alfalfa experiences drought stress when regulated by exogenous nitric oxide, targeting HD ZIP-III, FRI, and CoA ligase genes. Additionally, the expression of Msa-miR166s in response to drought stress varies between leaves and roots, indicating spatiotemporal specificity.


Arabidopsis Proteins , Arabidopsis , MicroRNAs , Medicago sativa/genetics , Plant Proteins/genetics , Nitric Oxide/metabolism , Droughts , Base Sequence , Arabidopsis/genetics , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Arabidopsis Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
9.
Infect Drug Resist ; 17: 1051-1071, 2024.
Article En | MEDLINE | ID: mdl-38505247

Purpose: Bloodstream infection(BSI) is linked with high mortality, underscoring the significance of prompt etiological diagnosis for timely and precise treatment. This study aims to investigate the diagnostic value of droplet digital polymerase chain reaction(ddPCR) in combination with conventional inflammatory markers [interleukin-6(IL-6) and procalcitonin(PCT)] concerning disease progression and treatment prognosis in BSI patients. Furthermore, the study aims to explore a more efficient clinical application strategy. Patients and Methods: This prospective case seried study centers on 176 patients suspected of or confirmed with BSI. Blood samples were collected to extract nucleic acids for identifying pathogens (bacteria, fungi, and viruses) and determining copy loads via ddPCR. Results: The sensitivity of ddPCR was markedly higher compared to the culture method (74.71% vs 31.03%). A positive correlation existed between bacterial load and levels of inflammatory markers [IL-6 (P=0.0182), PCT (P=0.0029), and CRP (P=0.0005)]. In suspected BSI cases, the combination of ddPCR and inflammatory markers could predict sepsis risk [ROC: Area under the curve(AUC)=0.6071, P=0.0383]. Within confirmed BSI patients, the ddPCR bacterial load of those with SOFA<7 was lower than that of the SOFA≥7 (P=0.0334). ddPCR (OR: 1.789, P=0.035) monitoring combined with PCT (OR: 1.787, P=0.035) holded predictive value for SOFA progression (AUC=0.7913, P=0.0003). Similarly, BSI survivors displayed a lower burden than non-survivors (P=0.0170). Additionally, ddPCR combinated with IL-6 provided a more accurate and expedited insight into clinical outcomes prediction for BSI confirmed patients (AUC=0.7352, P=0.0030). Serial monitoring of bacterial load by ddPCR effectively mirrored the clinical course of BSI in patients. Notably, patients with positive ddPCR virus infection exhibited significantly reduced lymphocyte counts (P=0.0003). Conclusion: In a clinical context, qualitative ddPCR results and quantitative continuous monitoring can more precisely assess sepsis progression and treatment prognosis in BSI patients. Furthermore, ddPCR results offer quicker and more accurate reference points for clinical antibacterial and antiviral interventions.

10.
BMC Genomics ; 25(1): 229, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38429670

BACKGROUND: Alfalfa (Medicago sativa. L) is one of the best leguminous herbage in China and even in the world, with high nutritional and ecological value. However, one of the drawbacks of alfalfa is its sensitivity to dry conditions, which is a global agricultural problem. The objective of this study was to investigate the regulatory effects of endogenous nitric oxide (NO) on endogenous hormones and related miRNAs in alfalfa seedling leaves under drought stress. The effects of endogenous NO on endogenous hormones such as ABA, GA3, SA, and IAA in alfalfa leaves under drought stress were studied. In addition, high-throughput sequencing technology was used to identify drought-related miRNAs and endogenous NO-responsive miRNAs in alfalfa seedling leaves under drought stress. RESULT: By measuring the contents of four endogenous hormones in alfalfa leaves, it was found that endogenous NO could regulate plant growth and stress resistance by inducing the metabolism levels of IAA, ABA, GA3, and SA in alfalfa, especially ABA and SA in alfalfa. In addition, small RNA sequencing technology and bioinformatics methods were used to analyze endogenous NO-responsive miRNAs under drought stress. It was found that most miRNAs were enriched in biological pathways and molecular functions related to hormones (ABA, ETH, and JA), phenylpropane metabolism, and plant stress tolerance. CONCLUSION: In this study, the analysis of endogenous hormone signals and miRNAs in alfalfa leaves under PEG and PEG + cPTIO conditions provided an important basis for endogenous NO to improve the drought resistance of alfalfa at the physiological and molecular levels. It has important scientific value and practical significance for endogenous NO to improve plant drought resistance.


MicroRNAs , Seedlings , Seedlings/genetics , Seedlings/metabolism , Medicago sativa/genetics , Nitric Oxide/metabolism , Droughts , MicroRNAs/genetics , MicroRNAs/metabolism , Hormones/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant
11.
Adv Mater ; : e2400764, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38415407

Supported metal catalysts have been exploited in various applications. Among them, cocatalyst supported on photocatalyst is essential for activation of photocatalysis. However, cocatalyst decoration in a controllable fashion to promote intrinsic activity remains challenging. Herein, a versatile method is developed for cocatalyst synthesis using an ice-templating (ICT) strategy, resulting in size control from single-atom (SA), and atomic clusters (AC) to nanoparticles (NP). Importantly, the coordination numbers (CN) of decorated AC cocatalysts are highly controllable, and this ICT method applies to various metals and photocatalytic substrates. Taking narrow-band gap Ga-doped La5 Ti2 Cu0.9 Ag0.1 O7 S5 (LTCA) photocatalyst as an example, supported Ru AC/LTCA catalysts with regulable Ru CNs have been prepared, delivering significantly enhanced activities compared to Ru SA and Ru NPs supported on LTCA. Specifically, Ru(CN = 3.4) AC/LTCA with an average CN of Ru─Ru bond measured to be ≈3.4 exhibits excellent photocatalytic H2 evolution rate (578 µmol h-1 ) under visible light irradiation. Density functional theory calculation reveals that the modeled Ru(CN = 3) atomic cluster cocatalyst possesses favorable electronic properties and available active sites for the H2 evolution reaction.

12.
Environ Res ; 249: 118466, 2024 May 15.
Article En | MEDLINE | ID: mdl-38354882

Global outbreaks and the spread of viral diseases in the recent years have led to a rapid increase in the usage of antiviral drugs (ATVs), the residues and metabolites of which are discharged into the natural environment, posing a serious threat to human health. There is an urgent need to develop sensitive and rapid detection tools for multiple ATVs. In this study, we developed a highly sensitive electrochemical sensor comprising a glassy carbon electrode (GCE) modified with graphitized hydroxylated multi-walled carbon nanotubes (G-MWCNT-OH) and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6, IL) for the detection of six ATVs including famciclovir (FCV), remdesivir (REM), favipiravir (FAV), hydroxychloroquine sulfate (HCQ), cepharanthine (CEP) and molnupiravir (MOL). The morphology and structure of the G-MWCNT-OH/IL nanocomposites were characterized comprehensively, and the electroactive surface area and electron conductivity of G-MWCNT-OH/IL/GCE were determined using cyclic voltammetry and electrochemical impedance spectroscopy. The thermodynamic stability and non-covalent interactions between the G-MWCNT-OH and IL were evaluated through quantum chemical simulation calculations, and the mechanism of ATV detection using the G-MWCNT-OH/IL/GCE was thoroughly examined. The detection conditions were optimized to improve the sensitivity and stability of electrochemical sensors. Under the optimal experimental conditions, the G-MWCNT-OH/IL/GCE exhibited excellent electrocatalytic performance and detected the ATVs over a wide concentration range (0.01-120 µM). The limit of detections (LODs) were 42.3 nM, 55.4 nM, 21.9 nM, 15.6 nM, 10.6 nM, and 3.2 nM for FCV, REM, FAV, HCQ, CEP, and MOL, respectively. G-MWCNT-OH/IL/GCE was also highly stable and selective to the ATVs in the presence of multiple interfering analytes. This sensor exhibited great potential for enabling the quantitative detection of multiple ATVs in actual water environment.


Antiviral Agents , Electrochemical Techniques , Ionic Liquids , Nanotubes, Carbon , Antiviral Agents/analysis , Antiviral Agents/chemistry , Nanotubes, Carbon/chemistry , Ionic Liquids/chemistry , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Limit of Detection , Electrodes , Graphite/chemistry
14.
Integr Cancer Ther ; 23: 15347354231225961, 2024.
Article En | MEDLINE | ID: mdl-38229425

BACKGROUND: In China, traditional Chinese medicines (TCMs), as a complementary therapy combined with chemotherapy, is widely used in the treatment of gastric cancer (GC). In order to systematically evaluate and synthesize existing evidence to provide a scientific basis for the efficacy and safety of this complementary therapy, we present an overview of systematic reviews (SRs) and meta-analyses (MAs) on the topic of TCMs as a complementary therapy in combination with chemotherapy for the treatment of GC. METHODS: SRs/MAs on TCMs combined with chemotherapy for GC were comprehensively searched in 8 databases. Methodological quality, risk of bias, reporting quality, and quality of evidence were assessed using the Assessment of Multiple Systematic Reviews 2 (AMSTAR-2), the Risk of Bias in Systematic (ROBIS) scale, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 (PRISMA 2020), as well as the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. RESULTS: Thirteen published SRs/MAs were included in our study. In terms of methodology, all SRs/MAs were considered to be of very low quality. Only 3 SRs/MAs has been assessed as low risk of bias. None of the SRs/MAs has been fully reported on the checklist. A total of 97 outcome indicators extracted from the included SRs/MAs were evaluated, and only 1 item was assessed as high quality. CONCLUSIONS: TCMs may be an effective and safe complementary therapy in combination with chemotherapy for the treatment of GC. However, this conclusion must be treated with caution as the quality of the evidence provided by SRs/MAs is generally low.


Acupuncture Therapy , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Medicine, Chinese Traditional , China , Databases, Factual
15.
J Psychiatr Res ; 170: 253-261, 2024 Feb.
Article En | MEDLINE | ID: mdl-38176353

OBJECTIVE: Insomnia is a significant health issue associated with various systemic diseases. Transcranial alternating current stimulation (tACS) has been proposed as a potential intervention for insomnia. However, the efficacy and mechanisms of tACS in chronic insomnia remain unclear. Accordingly, this study aimed to investigate the efficacy of tACS in treating chronic insomnia in adults and assess the impact of age on its effectiveness using a large sample from two centers. METHODS: A total of 120 participants with chronic insomnia underwent 20 daily sessions of tACS (duration: 40 min, frequency: 77.5 Hz, and intensity: 15 mA) or sham tACS targeting the forehead and both mastoid areas over 4 weeks. Assessments were conducted at baseline, post-treatment, and 4-week follow-up. Primary outcomes included sleep quality and efficiency, onset latency, total sleep time, and daily disturbances. Secondary outcomes included depression, anxiety, and clinical impression. RESULTS: Compared with the control group, the tACS group demonstrated improved sleep quality and efficiency, increased total sleep time, and reduced daily disturbance (all ps < 0.01). Moreover, tACS had a significant effect on clinical impression (p < 0.001), but not depression and anxiety scores. Subgroup analyses revealed that older participants experienced significant benefits from tACS in sleep quality, efficiency, and overall insomnia reduction at post-treatment and follow-up (p < 0.001). Notably, improved insomnia correlated with attenuated depressive and anxiety symptoms. CONCLUSIONS: These findings suggest that tACS may be an effective intervention for chronic insomnia within an eight-week timeframe, and age affects the response to tACS in terms of insomnia improvement.


Sleep Initiation and Maintenance Disorders , Transcranial Direct Current Stimulation , Adult , Humans , Anxiety Disorders , Double-Blind Method , Sleep Initiation and Maintenance Disorders/therapy , Treatment Outcome
16.
Small ; 20(3): e2305664, 2024 Jan.
Article En | MEDLINE | ID: mdl-37691085

Inorganic CsPbX3 perovskite quantum dots (PeQDs) show great potential in white light-emitting diodes (WLEDs) due to excellent optoelectronic properties, but their practical application is hampered by low photoluminescence quantum yield (PLQY) and especially poor stability. Herein,  we developed an in-situ and general multidentate ligand passivation strategy that allows for CsPbX3 PeQDs not only near-unit PLQY, but significantly improved stability against storage, heat, and polar solvent. The enhanced optical property arises from high effectiveness of the multidentate ligand, diethylenetriaminepentaacetic acid (DTPA) with five carboxyl groups, in passivating uncoordinated Pb2+ defects and suppressing nonradiative recombination. First-principles calculations reveal that the excellent stability is attributed to tridentate binding mode of DTPA that remarkably boosts the adsorption capacity to PeQD core. Finally, combining the green and red PeQDs with blue chip,  we demonstrated highly luminous WLEDs with distinctly enhanced operation stability, a wide color gamut of 121.3% of national television system committee, standard white light of (0.33,0.33) in CIE 1931, and tunable color temperatures from warm to cold white light readily by emitters' ratio. This study provides an operando yet general approach to achieve efficient and stable PeQDs for WLEDs and accelerates their progress to commercialization.

17.
Glob Chang Biol ; 30(1): e17005, 2024 Jan.
Article En | MEDLINE | ID: mdl-37905717

Climate change has induced substantial shifts in vegetation boundaries such as alpine treelines and shrublines, with widespread ecological and climatic influences. However, spatial and temporal changes in the upper elevational limit of alpine grasslands ("alpine grasslines") are still poorly understood due to lack of field observations and remote sensing estimates. In this study, taking the Tibetan Plateau as an example, we propose a novel method for automatically identifying alpine grasslines from multi-source remote sensing data and determining their positions at 30-m spatial resolution. We first identified 2895 mountains potentially having alpine grasslines. On each mountain, we identified a narrow area around the upper elevational limit of alpine grasslands where the alpine grassline was potentially located. Then, we used linear discriminant analysis to adaptively generate from Landsat reflectance features a synthetic feature that maximized the difference between vegetated and unvegetated pixels in each of these areas. After that, we designed a graph-cut algorithm to integrate the advantages of the Otsu and Canny approaches, which was used to determine the precise position of the alpine grassline from the synthetic feature image. Validation against alpine grasslines visually interpreted from a large number of high-spatial-resolution images showed a high level of accuracy (R2 , .99 and .98; mean absolute error, 22.6 and 36.2 m, vs. drone and PlanetScope images, respectively). Across the Tibetan Plateau, the alpine grassline elevation ranged from 4038 to 5380 m (5th-95th percentile), lower in the northeast and southeast and higher in the southwest. This study provides a method for remotely sensing alpine grasslines for the first-time at large scale and lays a foundation for investigating their responses to climate change.


Climate Change , Remote Sensing Technology , Tibet , Grassland , Ecosystem
18.
JACC Clin Electrophysiol ; 10(1): 82-92, 2024 Jan.
Article En | MEDLINE | ID: mdl-37831032

BACKGROUND: The incidence of atrioventricular conduction system damage during the catheter ablation procedure has long been a safety concern in patients with atrioventricular nodal re-entrant tachycardia (AVNRT). Pulsed-field ablation (PFA) with high tissue selectivity is a promising technique to address this problem in patients with AVNRT. OBJECTIVES: This study aimed to evaluate the safety and feasibility of PFA in patients with AVNRT. METHODS: This was an investigator-initiated, single-center, single-arm, prospective study performed in West China Hospital, Sichuan University. Patients diagnosed with AVNRT by electrophysiological examination were included and treated using PFA. The primary outcome was the ability to achieve acute ablation success. The secondary outcomes were ablation success after 6 months and safety incidents reported. RESULTS: A total of 30 patients with AVNRT with a mean age of 47.9 ± 13.9 years were included and underwent PFA. Acute ablation success was achieved in all patients. The skin-to-skin procedure time was 109.1 ± 32.1 minutes, and fluoroscopy time was 4.1 ± 0.9 minutes. A median of 8 (range: 6.5 to 11.0) PFA applications were delivered. The average distance of the closest ablation site to the His bundle was 6.5 ± 2.5 mm, with a minimum distance of 2.0 mm. All patients maintained sinus rhythm after 6 months. No adverse events occurred in any patient during the ablation or the 6-month follow-up. CONCLUSIONS: PFA showed favorable feasibility and safety in patients with AVNRT in this pilot study. Further study with larger population and longer follow-up time is warranted to verify the results.


Tachycardia, Atrioventricular Nodal Reentry , Adult , Humans , Middle Aged , Feasibility Studies , Neoplasm Recurrence, Local , Pilot Projects , Prospective Studies
19.
Med ; 5(2): 106-108, 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38128535

Treatment options for patients with metastatic urothelial carcinoma ineligible for cisplatin-based chemotherapy have historically been limited. O'Donnell et al. recently reported the results of EV-103 Cohort K,1 leading to accelerated approval of enfortumab vedotin and pembrolizumab for cisplatin-ineligible patients and raising additional questions of how to best utilize this effective regimen.


Antibodies, Monoclonal, Humanized , Antibodies, Monoclonal , Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Urologic Neoplasms , Humans , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/pathology , Cisplatin/therapeutic use , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urologic Neoplasms/drug therapy , Urologic Neoplasms/pathology
20.
Am J Transl Res ; 15(11): 6437-6450, 2023.
Article En | MEDLINE | ID: mdl-38074824

BACKGROUND: Tartrate-resistant acid phosphatase (ACP5) has been implicated in the progression of most malignant tumors, but its role in pancreatic cancer (PC) remained unclear. Thus, this study aimed to elucidate the role and function of ACP5 in PC progression. METHODS: The expression of ACP5 in PC samples was assessed via R programming, TNM plot, and Gene Expression Profiling Interactive Analysis (GEPIA). Western blotting and immunohistochemistry (IHC) were performed to detect ACP5 expression in cells and tissues. The correlation between ACP5 and methylation was analyzed using the University of ALabama at Birmingham Cancer data analysis Portal (UALCAN) and cBio Cancer Genomics Portal (cBioPortal). The Database for Annotation, Visualization and Integrated Discovery (DAVID) and Gene Set Enrichment Analysis (GSEA) were used for the enrichment of ACP5 in PC. Subsequently, Cell Counting Kit-8 (CCK8), clonogenic, and wound healing assays were used to investigate the role of ACP5 in PC. Finally, Tumor Immune Estimation Resource (TIMER) and R programming was utilized in evaluating the association between ACP5 and immune cell infiltration in PC. RESULTS: The analyses confirmed that ACP5 was highly expressed in PC samples. According to UALCAN and cBioPortal analysis, ACP5 expression, and methylation levels were negatively correlated in PC. The enrichment analysis also revealed that ACP5 was enriched in the proliferation and migration pathways. Meanwhile, ACP5 knockout reduced PC cell proliferation and migration and impaired the cells' independent viability. This gene also positively correlated with immune cell infiltration in PC, particularly regulatory T cells (Tregs). CONCLUSION: ACP5 is crucial for proliferation, migration, and immune cell infiltration in PC. Therefore, ACP5 may be a valuable target for future PC treatment.

...